B. Math. III - Mid-Term Examination

Introduction to Differential Geometry

September 10, 2014

- 1. Define the vector product of two vectors in \mathbb{R}^3 . Prove that for vectors u,v,x,y in \mathbb{R}^3 , the dot product $(u\times v)\cdot (x\times y)$ equals the determinant of the matrix $\begin{bmatrix} u\cdot x & v\cdot x \\ u\cdot y & v\cdot y \end{bmatrix}$.
- **2.** (*Viviani's curve*) Show that $\gamma(t) = (\cos^2 t \frac{1}{2}, \sin t \cos t, \sin t)$ is a parametrisation of the curve of intersection of circular cylinder of radius $\frac{1}{2}$ and axis the z-axis with sphere of radius 1 and center $(-\frac{1}{2}, 0, 0)$.
- **3.** Define torsion τ of a regular curve in \mathbb{R}^3 having nowhere zero curvature. Prove that τ is zero if and only if the curve lies in a plane.
- 4. Compute the torsion τ and curvature κ of the Viviani's curve given above and verify that:

$$\frac{\tau}{\kappa} = \frac{d}{ds}(\frac{\dot{\kappa}}{\tau \kappa^2}).$$

5. Show that the ellipse

$$\gamma(t) = (a\cos(t), b\sin(t)),$$

where a and b are positive constants, is a simple closed curve and compute the area of its interior.